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Shearer’s Lemma

Shearer’s lemma extends the subadditivity property of Shannon entropy.

Proposition 1.1 (Shearer’s Lemma)

Let X1, . . . , Xn be discrete random variables, and let S1, . . . ,Sm ⊆ [n]
be subsets such that each element i ∈ [n] belongs to at least k ≥ 1 of
these subsets. Then,

kH(Xn) ≤
m∑
j=1

H(XSj ), (1.1)

with Xn ≜ (X1, . . . , Xn), and XSj ≜ (Xi)i∈Sj for all j ∈ [m].
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Proof of Shearer’s Lemma (Proposition 1.1)

By assumption, d(i) ≥ k for all i ∈ [n], where

d(i) ≜
∣∣{j ∈ [m] : i ∈ Sj

}∣∣. (1.2)

Let S = {i1, . . . , iℓ}, 1 ≤ i1 < . . . < iℓ ≤ n =⇒ |S| = ℓ, S ⊆ [n].

Let XS ≜ (Xi1 , . . . , Xiℓ).

By the chain rule and the fact that conditioning reduces entropy,

H(XS) = H(Xi1) + H(Xi2 |Xi1) + . . .+H(Xiℓ |Xi1 , . . . , Xiℓ−1
)

≥
∑
i∈S

H(Xi|X1, . . . , Xi−1)

=

n∑
i=1

{
1{i ∈ S} H(Xi|X1, . . . , Xi−1)

}
. (1.3)
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Proof of Shearer’s Lemma (Cont.)

m∑
j=1

H(XSj ) ≥
m∑
j=1

n∑
i=1

{
1{i ∈ Sj} H(Xi|X1, . . . , Xi−1)

}

=

n∑
i=1

{
m∑
j=1

1{i ∈ Sj} H(Xi|X1, . . . , Xi−1)

}

=

n∑
i=1

{
d(i) H(Xi|X1, . . . , Xi−1)

}
≥ k

n∑
i=1

H(Xi|X1, . . . , Xi−1) (1.4)

= k H(Xn),

where inequality (1.4) holds due to the nonnegativity of the conditional
entropies of discrete random variables, and under the assumption that
d(i) ≥ k for all i ∈ [n].
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Shearer’s Lemma

Remark 1

1 Proposition 1.1 does not extend to continuous random variables, with
entropies replaced by differential entropies, as the differential entropy
of a continuous random variable may be negative, thereby invalidating
inequality (1.4) under the assumption that d(i) ≥ k for all i ∈ [n].

2 If each element i ∈ [n] belongs to exactly k of the sets {Sj}mj=1, then
inequality (1.4) becomes an equality, irrespective of the nonnegativity
issue of the conditional entropies.
=⇒ If d(i) = k for all i ∈ [n], then Shearer’s lemma extends to
continuous random variables, with entropies replaced by differential
entropies on both sides of inequality (1.1), as conditioning reduces
the entropy for both discrete and continuous random variables.
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A Geometric Application of Shearer’s Lemma

Example 1.1

Let P ⊆ R3 be a set of points that has at most r distinct projections on
each of the XY , XZ and Y Z planes. How large can this set be ?
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A Geometric Application of Shearer’s Lemma

Example 1.1

Let P ⊆ R3 be a set of points that has at most r distinct projections on
each of the XY , XZ and Y Z planes. How large can this set be ?

As we shall see in the next slide,

|P| ≤ r
3
2 .

Furthermore, that bound on the cardinality of the set P is achieved by a
grid of

√
r ×

√
r ×

√
r points, provided that r is a square of an integer.
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Example 1.1 (cont.)

By Shearer’s lemma,

2H(X,Y, Z) ≤ H(X,Y ) + H(X,Z) + H(Y, Z). (1.5)

Let (X,Y, Z) ∈ P be selected uniformly at random in P. Then,

H(X,Y, Z) = log |P|. (1.6)

By assumption, the set P has at most r distinct projections on each
of the XY,XZ, and Y Z planes. Hence,

H(X,Y ) ≤ log r, H(X,Z) ≤ log r, H(Y,Z) ≤ log r. (1.7)

Combining (1.5)–(1.7) gives

2 log |P| ≤ 3 log r, (1.8)

and then exponentiating both sides of (1.8) gives |P| ≤ r
3
2 .
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Direct proof of (1.5)

By the chain rule for the Shannon entropy,

H(X,Y, Z) = H(X) + H(Y |X) + H(Z|X,Y ), (1.9)

and as conditioning reduces entropy,

H(X,Y ) = H(X) + H(Y |X), (1.10)

H(X,Z) = H(X) + H(Z|X)

≥ H(X) + H(Z|X,Y ), (1.11)

H(Y, Z) = H(Y ) + H(Z|Y ),

≥ H(Y |X) + H(Z|X,Y ). (1.12)

Combining (1.10)–(1.12) yields

H(X,Y ) + H(X,Z) + H(Y, Z) ≥ 2
(
H(X) + H(Y |X) + H(Z|X,Y )

)
= 2H(X,Y, Z), (1.13)

which proves inequality (1.5).
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Proposition 1.2 (Shearer’s Lemma: Second Version)

Let Xn be a discrete n-dimensional random vector, and let S ⊆ [n] be a
random subset of [n], independent of Xn, with an arbitrary probability
mass function PS . If there exists θ > 0 such that

Pr[i ∈ S] ≥ θ, ∀ i ∈ [n], (1.14)

then,

ES
[
H(XS)

]
≥ θH(Xn). (1.15)
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Proof of Proposition 1.2

By inequality (1.3), for any set S ⊆ [n],

H(XS) ≥
n∑

i=1

{
1{i ∈ S} H(Xi|X1, . . . , Xi−1)

}
.
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Proof of Proposition 1.2 (cont.)

=⇒ ES
[
H(XS)

]
=
∑
S ⊆[n]

PS(S) H(XS)

≥
∑
S ⊆[n]

{
PS(S)

n∑
i=1

{
1{i ∈ S} H(Xi|X1, . . . , Xi−1)

}}

=

n∑
i=1

{ ∑
S ⊆[n]

{
PS(S) 1{i ∈ S}

}
H(Xi|X1, . . . , Xi−1)

}

=

n∑
i=1

Pr[i ∈ S] H(Xi|X1, . . . , Xi−1)

≥ θ

n∑
i=1

H(Xi|X1, . . . , Xi−1) (1.16)

= θH(Xn).
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Shearer’s Lemma: Second Version

Remark 2

Similarly to Remark 1, if Pr[i ∈ S] = θ for all i ∈ [n], then inequality
(1.16) holds with equality. Hence, if the condition in (1.14) is satisfied
with equality for all i ∈ [n], then (1.15) extends to continuous random
variables, with entropies replaced by differential entropies.
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Application of Proposition 1.2 to Graph Theory

Definition 1.2 (Complete and Simple Graphs)

A complete graph on n vertices, denoted by Kn, is defined by the property
that every two vertices in the graph are adjacent (e.g., K1 is an isolated
vertex, K2 is an edge, and K3 is a triangle). A simple graph is a graph
with no loops or edges with multiplicity.

Unless explicitly mentioned, all graphs are assumed to be undirected.

Proposition 1.3

Let G be a simple graph on n vertices, and let mk be the number of the
Kk induced subgraphs in G. Then, for all ℓ, r ∈ N with 2 ≤ ℓ < r ≤ n,

mr ≤
(ℓ!mℓ)

r
ℓ

r!
. (1.17)
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Proof of Proposition 1.3

Label the vertices of G by the elements of the set [n], and let ℓ, r ∈ N
be arbitrary integers such that 2 ≤ ℓ ≤ r ≤ n.

Let X1, . . . , Xr be random variables selected uniformly at random as
the vertices of any complete induced subgraph Kr in G.

Let mr be the number of the induced subgraphs Kr in G. Then,

H(X1, . . . , Xr) = log(r!mr), (1.18)

since the r vertices of each complete induced subgraph Kr in G can
be selected in r! ways by arbitrarily permuting their order of selection.

Let S be a uniformly selected subset of size ℓ from [r]. Then,

Pr[i ∈ S] = ℓ

r
, ∀ i ∈ [r]. (1.19)

By Proposition 1.2, it follows from (1.18) and (1.19) that

ES
[
H(XS)

]
≥ ℓ log(r!mr)

r
. (1.20)
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Proof of Proposition 1.3 (cont.)

=⇒ ∃ T ∈ [r], with |T | = ℓ, for which

H(XT ) ≥
ℓ log(r!mr)

r
. (1.21)

Furthermore, XT is supported on a Kℓ subgraph in G, so

H(XT ) ≤ log(ℓ!mℓ), (1.22)

since, similarly, the ℓ vertices of each complete induced subgraph Kℓ

in G can be selected in ℓ! ways by arbitrarily permuting their order of
selection.

Combining (1.21) and (1.22) gives

log(ℓ!mℓ) ≥
ℓ log(r!mr)

r
, (1.23)

and rearranging terms in (1.23) gives (1.17).

I. Sason, Technion, Israel ETH, Zurich, Switzerland November 1, 2024 15 / 52



Example 1.3

Let G be a simple graph on n vertices with e edges and t triangles.
Substituting ℓ = 2 and r = 3 into (1.17), where m2 = e and m3 = t, gives

t ≤ 1
6(2e)

3
2 . (1.24)

Inequality (1.24) can also be derived by using spectral graph theory. Let A
be the adjacency matrix of G, with spectrum {λj}nj=1. Then,

n∑
j=1

λ2
j = Tr(A2) = 2e, (1.25)

n∑
j=1

λ3
j = Tr(A3) = 6t, (1.26)

=⇒ 6t =

n∑
j=1

λ3
j ≤

(
n∑

j=1

λ2
j

) 3
2

= (2e)
3
2 , (1.27)

which coincides with (1.24).

I. Sason, Technion, Israel ETH, Zurich, Switzerland November 1, 2024 16 / 52



Shearer’s Lemma on Hypergraphs

Definition 1.4 (Hypergraph)

A hypergraph H is a pair H = (V,E) where V is a set of vertices, and E
is a collection of subsets of V, called hyperedges. The cardinality of the
vertex set V is called the order of the hypergraph, and the cardinality of
the set E of hyperedges is called the size of the hypergraph.

A graph is a special case of a hypergraph, in which all hyperedges have
cardinality 2.
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Shearer’s Lemma on Hypergraphs

Definition 1.4 (Hypergraph)

A hypergraph H is a pair H = (V,E) where V is a set of vertices, and E
is a collection of subsets of V, called hyperedges. The cardinality of the
vertex set V is called the order of the hypergraph, and the cardinality of
the set E of hyperedges is called the size of the hypergraph.

A graph is a special case of a hypergraph, in which all hyperedges have
cardinality 2.

We next formulate Shearer’s lemma in the context of hypergraphs.
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Proposition 1.4 (Shearer’s Lemma on Hypergraphs, Friedgut 2004)

Let H = (V,E) be a hypergraph, and let S1, . . . ,Sm ⊆ V be nonempty
subsets of the vertex set such that every vertex v ∈ V belongs to at least
k of the subsets S1, . . . ,Sm. For all j ∈ [m], let Hj = (Sj ,Ej) be the
projection hypergraph, whose set of hyperedges is given by

Ej =
{
e ∩ Sj : e ∈ E

}
. (1.28)

Then,

|E |k ≤
m∏
j=1

|Ej |. (1.29)

Inequality (1.29) establishes an upper bound on the size of a hypergraph,
based on the sizes of its projection hypergraphs onto subsets, where each
vertex is contained in at least k ≥ 1 of these subsets.

I. Sason, Technion, Israel ETH, Zurich, Switzerland November 1, 2024 18 / 52



Proof of Proposition 1.4

Without any loss of generality, let V = [n], where n is the order of H.
Let e ∈ E be selected uniformly at random, and define the binary random
variables X1, . . . , Xn as the indicators of the n vertices in the selected
hyperedge e, i.e., Xi = 1{i ∈ e} ∈ {0, 1} for every i ∈ [n]. Then,

H(X1, . . . , Xn) = log |E |. (1.30)

For j ∈ [m], the binary random vector XSj is one of |Ej | possibilities, so
H(XSj ) ≤ log |Ej |, j ∈ [m]. (1.31)

By Shearer’s lemma (see Proposition 1.1),

kH(X1, . . . , Xn) ≤
m∑
j=1

H(XSj ), (1.32)

=⇒ k log |E | ≤
m∑
j=1

log |Ej |. (1.33)

Exponentiating both sides of (1.33) gives (1.29).
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Proposition 1.5 (Weighted Shearer’s Lemma on Hypergraphs,
Friedgut 2004)

In the setting of Proposition 1.4, for each j ∈ [m], let wj : Ej → R+ be a
nonnegative real-valued function. Then,(∑

e∈E

m∏
j=1

wj(e ∩ Sj)

)k

≤
m∏
j=1

∑
ej∈Ej

wj(ej)
k. (1.34)

Proposition 1.5 reduces to Proposition 1.4 by setting all the nonnegative
functions wj : Ej → R+, with j ∈ [m], to 1.
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Application of Proposition 1.5 to Matrix Inequalities

Proposition 1.6

Let A1, . . . ,Am be real matrices such that the product AjAj+1 is defined
for all j ∈ [m− 1], and the product A1 . . .Am is a square matrix. Then,∣∣∣∣∣Tr

(
m∏
j=1

Aj

)∣∣∣∣∣ ≤
√√√√ m∏

j=1

Tr
(
Aj AT

j

)
. (1.35)

Corollary 1.5

Let A = (ai,ℓ), B = (bℓ,k), and C = (ck,i) be real matrices. Then,(∑
i,ℓ,k

ai,ℓ bℓ,k ck,i

)2

≤
∑
i,ℓ

a2i,ℓ
∑
ℓ,k

b2ℓ,k
∑
k,i

c2k,i. (1.36)
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Proof of Proposition 1.6

Let A1 = (a1(i1, i2)), A2 = (a2(i2, i3)), . . . ,Am = (am(im, i1)), which is a
necessary and sufficient condition for the product AjAj+1 to be defined for all
j ∈ [m− 1], and for the product A1 . . .Am to be a square matrix. Let Ij be
the set of the ij-values, for all j ∈ [m].

The left and right-hand sides of (1.35) are, respectively, equal to∣∣∣∣∣Tr
(

m∏
j=1

Aj

)∣∣∣∣∣ =
∣∣∣∣∣ ∑
i1,...,im

a1(i1, i2) a2(i2, i3) . . . am(im, i1)

∣∣∣∣∣,√√√√ m∏
j=1

Tr
(
Aj AT

j

)
=

√∑
i1,i2

a1(i1, i2)2
∑
i2,i3

a2(i2, i3)2 . . .
∑
i1,im

am(im, i1)2,

so, without any loss of generality, it is assumed that all the entries of the matrices

A1, . . . ,Am are nonnegative. Otherwise, the left-hand side of (1.35) may only

decrease by negating some of the entries of the matrices A1, . . . ,Am, whereas

the right-hand side of (1.35) stays unaffected.
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Proof of Proposition 1.6 (cont.)

For proving inequality (1.35), let H be a complete m-partite hypergraph, whose
vertex set is given by

V =

m⋃
j=1

Ij , (1.37)

and whose set of hyperedges is given by

E =
{
{i1, . . . , im} : (i1, . . . , im) ∈ I1 × . . .× Im

}
. (1.38)

Define, furthermore, the following m subsets of V:

S1 = I1 ∪ I2, S2 = I2 ∪ I3, . . . ,Sm = Im ∪ I1, (1.39)

so, every element in V is included in at least two of the m sets S1, . . . ,Sm.

Let e ∈ E, and ej = e ∩ Sj ∈ Ej for all j ∈ [m].

Assign the weight wj(ej) = aj(ij , ij+1) ≥ 0, for each j ∈ [m− 1], and assign the

weight wm(em) = am(im, i1) ≥ 0.
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Proof of Proposition 1.6 (cont.)

An application of Proposition 1.6, with k = 2, gives that the left and right-hand
sides of (1.34) are, respectively, equal to(∑

e∈E

m∏
j=1

wj(e ∩ Sj)

)k

=

( ∑
i1,...,im

a1(i1, i2) a2(i2, i3) . . . am(im, i1)

)2

=

(
Tr

(
m∏
j=1

Aj

))2

, (1.40)

and,
m∏
j=1

∑
ej∈Ej

wj(ej)
k =

∑
i1,i2

a1(i1, i2)
2 . . .

∑
i1,im

am(im, i1)
2

=

m∏
j=1

Tr
(
Aj A

T
j

)
. (1.41)

Substituting (1.40) and (1.41) into (1.34) gives (1.35).
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Proposition 1.7 (Shearer’s Lemma for the Relative Entropy, Gavinsky
et al., 2015)

Let X1, . . . , Xn be discrete random variables.

Let U1, . . . , Un be independent random variables, where Ui has an
equiprobable distribution over a set containing the support of Xi.

Let S1, . . . ,Sm ⊆ [n] be subsets such that each element i ∈ [n] is
contained in at most k ≥ 1 of these subsets.

Then,

kD
(
PXn ∥PUn

)
≥

m∑
j=1

D
(
PXSj

∥PUSj

)
. (1.42)
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Proof of Proposition 1.7

Without any loss of generality, one can assume that every element i ∈ [n]
is included in exactly k subsets among S1, . . . ,Sm ⊆ [n]. This holds since

By the chain rule for the relative entropy, adding some elements to a
set Sj cannot decrease the relative entropy D

(
PXSj

∥PUSj

)
.

=⇒ The right-hand side of (1.42) cannot be decreased as a result of
adding elements to some subsets {Sj}mj=1.

The left-hand side of (1.42) stays, however, unaffected as a result of
these additions of elements.

The following equality holds:

D
(
PXn ∥PUn

)
= H(Un)−H(Xn), (1.43)

since U1, . . . , Un are independent random variables, and Ui is equiprobable
over a set containing the support of Xi for all i ∈ [n].
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Proof of Proposition 1.7 (Cont.)

Given that {Ui}ni=1 are independent random variables, and by the
assumption that d(i) = k for all i ∈ [n] (see (1.2)), meaning each
element in [n] belongs to exactly k subsets among S1, . . . ,Sm,

kH(Un) = k

n∑
i=1

H(Ui)

=

n∑
i=1

d(i)H(Ui)

=
m∑
j=1

H(USj ). (1.44)

By Shearer’s lemma (Proposition 1.1),

kH(Xn) ≤
m∑
j=1

H(XSj ). (1.45)
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Proof of Proposition 1.7 (Cont.)

Combining (1.43), (1.44), and (1.45) gives

kD
(
PXn ∥PUn

)
= kH(Un)− kH(Xn)

=

m∑
j=1

H(USj )− kH(Xn)

≥
m∑
j=1

H(USj )−
m∑
j=1

H(XSj )

=

m∑
j=1

(
H(USj )−H(XSj )

)
=

m∑
j=1

D
(
PXSj

∥PUSj

)
.

Q.E.D.
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Application of Shearer’s Lemma to Families of Read-k Functions

Let m,n ∈ N, and let

X1, . . . , Xn be independent random variables, and Xi ∈ Xi, ∀ i ∈ [n],

S1, . . . ,Sm ⊆ [n], and XSj ≜ (Xi)i∈Sj for all j ∈ [m],

{fj}mj=1 be a family of functions, where fj :
∏
i∈Sj

Xi → R, ∀ j ∈ [m],

Y m be a random vector, where Yj ≜ fj(XSj ) for all j ∈ [m],

pj ≜ E
[
Yj
]
, for all j ∈ [m], exist and be finite.

Consider first the following setup:

If {Sj}mj=1 are disjoint sets, then {Yj}mj=1 are statistically independent.

If also Y m ∈ {0, 1}m ( =⇒ pj = Pr[Yj = 1], ∀ j ∈ [m]), then

Pr[Y1 = . . . = Ym = 1] =

m∏
j=1

pj . (1.46)
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Definition 1.6 (A Set of Read-k Functions)

A set of read-k functions is a set of functions where each input variable
appears in the arguments of at most k different functions within that set.
In other words, in the context of such a set, each variable can only be read
or accessed by at most k functions.

A set of functions {fj}mj=1, whose arguments are x1, . . . , xn, is read-k if
there exist subsets S1, . . . ,Sm ⊆ [n] such that fj depends on the vector
xSj ≜ (xi)i∈Sj , for each j ∈ [m], and∣∣{j ∈ [m] : i ∈ Sj

}∣∣ ≤ k, ∀ i ∈ [n]. (1.47)
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Definition 1.6 (A Set of Read-k Functions)

A set of read-k functions is a set of functions where each input variable
appears in the arguments of at most k different functions within that set.
In other words, in the context of such a set, each variable can only be read
or accessed by at most k functions.

A set of functions {fj}mj=1, whose arguments are x1, . . . , xn, is read-k if
there exist subsets S1, . . . ,Sm ⊆ [n] such that fj depends on the vector
xSj ≜ (xi)i∈Sj , for each j ∈ [m], and∣∣{j ∈ [m] : i ∈ Sj

}∣∣ ≤ k, ∀ i ∈ [n]. (1.47)

Shearer’s lemma (Proposition 1.1) enables the extension of equality (1.46)
into an inequality that holds for random variables defined by an arbitrary
set of read-k Boolean functions.

I. Sason, Technion, Israel ETH, Zurich, Switzerland November 1, 2024 30 / 52



Proposition 1.8 (A Probabilistic Result on Read-k Boolean Functions)

Let m,n, k ∈ N, with k ≤ m,

Let {fj}mj=1 be a set of read-k Boolean functions,

Let Xn be a binary random vector, uniformly distributed on {0, 1}n,
Let S1, . . . ,Sm ⊆ [n], where every i ∈ [n] belongs to at most k of
the subsets {Sj}mj=1,

Let {Yj}mj=1 be defined as Yj ≜ fj(XSj ), ∀ j ∈ [m],

Let pj ≜ Pr[Yj = 1] for all j ∈ [m].

Then,

Pr[Y1 = . . . = Ym = 1] ≤

(
m∏
j=1

pj

) 1
k

. (1.48)
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Let m,n, k ∈ N, with k ≤ m,
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Let Xn be a binary random vector, uniformly distributed on {0, 1}n,
Let S1, . . . ,Sm ⊆ [n], where every i ∈ [n] belongs to at most k of
the subsets {Sj}mj=1,

Let {Yj}mj=1 be defined as Yj ≜ fj(XSj ), ∀ j ∈ [m],

Let pj ≜ Pr[Yj = 1] for all j ∈ [m].

Then,

Pr[Y1 = . . . = Ym = 1] ≤

(
m∏
j=1

pj

) 1
k

, (1.48)

with equality in (1.48) if k = 1, or if the following two conditions are
satisfied under the given setup:
(X1 = . . . = Xn = 1 ⇐⇒ Y1 = . . . = Ym = 1) and p1 . . . pm = 2−nk.
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Example 1.7

Let G = G(n, p) be a random graph on n vertices, where any two
vertices are independently adjacent with probability p.

Let Ev be an event which depends on the edges that are incident to
the vertex v ∈ V(G).

An edge e ∈ E(G) can only affect the two events Ev1 and Ev2 , where
v1 and v2 are the endpoints of e.

By construction, the edges in E(G) are statistically independent.

Let Yv ≜ 1{Ev} for all v ∈ V(G). Then, every edge e ∈ E(G) affects
at most k = 2 values among the binary random variables {Yv}v∈V(G).
By Proposition 1.8, it follows that

Pr

( ⋂
v∈V(G)

Ev

)
≤
√ ∏

v∈V(G)

Pr(Ev). (1.49)
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Binary Relative Entropy

Let p, q ∈ [0, 1]. The binary relative entropy, Db(p∥q), is defined to be the
relative entropy from the Bernoulli distribution (p, 1− p) to the Bernoulli
distribution (q, 1− q), i.e.,

Db(p∥q) = p log
p

q
+ (1− p) log

1− p

1− q
, (1.50)

with the convention that 0 log 0 ≜ lim
x→0+

x log x = 0. In particular,

Db(p∥ 1
2) = 1− Hb(p), ∀ p ∈ [0, 1]. (1.51)
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Let p, q ∈ [0, 1]. The binary relative entropy, Db(p∥q), is defined to be the
relative entropy from the Bernoulli distribution (p, 1− p) to the Bernoulli
distribution (q, 1− q), i.e.,

Db(p∥q) = p log
p

q
+ (1− p) log

1− p

1− q
, (1.50)

with the convention that 0 log 0 ≜ lim
x→0+

x log x = 0. In particular,

Db(p∥ 1
2) = 1− Hb(p), ∀ p ∈ [0, 1]. (1.51)

An Application of Proposition 1.7: Chernoff-Like Bounds

Building on Proposition 1.7, the following result establishes Chernoff-like
bounds for the one-sided tail probabilities of sums of dependent random
variables.
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Proposition 1.9 (Chernoff-Like Bounds for Sums of Read-k Functions,
Gavinsky et al., 2015)

Let m,n, k ∈ N, with k ≤ m,

Let X1, . . . , Xn be independent discrete random variables,

Let S1, . . . ,Sm ⊆ [n], containing every i ∈ [n] in at most k subsets,

Let {fj}mj=1 be a set of read-k functions with range in [0, 1],

Let pj ≜ E[Yj ], where Yj ≜ fj(XSj ) for all j ∈ [m],

Let p ≜ 1
m

m∑
j=1

pj .

Then, the following Chernoff-like bounds hold for every ε > 0:

Pr

[
m∑

j=1

Yj ≥ m (p+ ε)

]
≤ exp

(
−m

k
· Db

(
(p+ ε)∥p

))
≤ e−

2mε2

k , (1.52)

Pr

[
m∑

j=1

Yj ≤ m (p− ε)

]
≤ exp

(
−m

k
· Db

(
(p− ε)∥p

))
≤ e−

2mε2

k . (1.53)
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Application: On the Number of Length-r Cycles in a Random Graph

Let G = G(n, p) be a random graph on n vertices, where each pair of
vertices is adjacent with probability p, independently of every other pair.
Let Nr(G) be the number of length-r cycles in a randomly selected graph
G = G(n, p). By Proposition 1.9 it can be shown that, for all ε > 0,

Pr
[∣∣Nr(G)− E[Nr(G)]

∣∣ ≥ εE[Nr(G)]
]
≤ 2 e−

n(n−1)
r

·ε2p2r , (1.54)

where

E[Nr(G)] =
1
2(r − 1)!

(
n

r

)
pr. (1.55)

Example 1.8 (On the Number of Triangles in a Random Graph)

Since C3 is a triangle, substituting r = 3 into (1.54) and (1.55) specializes
to a result in the paper by Gavinsky et al. (Random Structures and
Algorithms, 2015).
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Generalizations of Shearer Inequalities
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A Generalized Version of Shearer’s Lemma

We next provide a generalized version of Shearer’s Lemma. To that end,
let Ω be a finite and non-empty set, and let f : 2Ω → R be a real-valued
set function (i.e., f is defined for all subsets of Ω).

Definition 2.1 (Sub/Supermodular function)

The set function f : 2Ω → R is submodular if

f(T ) + f(S) ≥ f(T ∪ S) + f(T ∩ S), ∀ S, T ⊆ Ω (2.1)

Likewise, f is supermodular if −f is submodular.
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Equivalent Condition for Submodularity

An identical characterization of submodularity is the diminishing return
property, which is stated as follows.

Proposition 2.1

A set function f : 2Ω → R is submodular if and only if whenever

S ⊂ T ⊂ Ω, ω ∈ T c =⇒ f(S ∪ {ω})− f(S) ≥ f(T ∪ {ω})− f(T ). (2.2)
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An identical characterization of submodularity is the diminishing return
property, which is stated as follows.

Proposition 2.1

A set function f : 2Ω → R is submodular if and only if whenever

S ⊂ T ⊂ Ω, ω ∈ T c =⇒ f(S ∪ {ω})− f(S) ≥ f(T ∪ {ω})− f(T ). (2.2)

The equivalent condition for the submodularity of f in (2.2) means that
the larger is the set, the smaller is the increase in f when a new element is
added.
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Definition 2.2 (Monotonic set function)

The set function f : 2Ω → R is monotonically increasing if

S ⊆ T ⊆ Ω =⇒ f(S) ≤ f(T ). (2.3)

Likewise, f is monotonically decreasing if −f is monotonically increasing.
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Definition 2.2 (Monotonic set function)

The set function f : 2Ω → R is monotonically increasing if

S ⊆ T ⊆ Ω =⇒ f(S) ≤ f(T ). (2.3)

Likewise, f is monotonically decreasing if −f is monotonically increasing.

Definition 2.3 (Polymatroid, ground set and rank function)

Let f : 2Ω → R be submodular and monotonically increasing set function
with f(∅) = 0. The pair (Ω, f) is called a polymatroid, Ω is called a
ground set, and f is called a rank function.
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Proposition 2.2 (Information-Theoretic Set Functions)

Let Ω be a finite and non-empty set, and let {Xω}ω∈Ω be a collection of
discrete random variables. Then, the following holds:

1 The set function f : 2Ω → R, given by

f(T ) ≜ H(XT ), T ⊆ Ω, (2.4)

is a rank function.

2 The set function f : 2Ω → R, given by

f(T ) ≜ H(XT |XT c), T ⊆ Ω, (2.5)

is supermodular, monotonically increasing, and f(∅) = 0.
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Proposition 2.2 (cont.)

3 The set function f : 2Ω → R, given by

f(T ) ≜ I(XT ;XT c), T ⊆ Ω, (2.6)

is submodular, f(∅) = 0, but f is not a rank function. The latter
holds since the equality f(T ) = f(T c), for all T ⊆ Ω, implies that f
is not a monotonic function.

4 Let U ,V ⊆ Ω be disjoint subsets, and let the entries of the random
vector XV be conditionally independent given XU . Then, the set
function f : 2V → R given by

f(T ) ≜ I(XU ;XT ), T ⊆ V, (2.7)

is a rank function.
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Proposition 2.2 (cont.)

5 Let XΩ = {Xω}ω∈Ω be independent random variables, and let the set
function f : 2Ω → R be given by

f(T ) ≜ H

(∑
ω∈T

Xω

)
, T ⊆ Ω. (2.8)

Then, f is a rank function.
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Proof.

We prove Item (a), in regard to the entropy as a set function f : 2Ω → R,
given in (2.4). It is clear that f(∅) = 0, and also f is monotonically
increasing. The submodularity of f is next verified. Let S ⊂ T ⊂ Ω and
ω ∈ T c ≜ Ω \ T . Then,

f(T ∪ {ω})− f(T ) = H(XT ∪{ω})−H(XT )

= H(Xω|XT )

= H(Xω|XS , XT \S)

≤ H(Xω|XS) (2.9)

= H(XS∪{ω})−H(XS)

= f(S ∪ {ω})− f(S),

which asserts the submodularity of f =⇒ f is a rank function.
The proofs for the set functions in (2.5)–(2.8) are left as exercises.
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Proposition 2.3 (Generalized Version of Shearer’s Lemma: I.S, 2022)

Let Ω be a finite set, let {Sj}Mj=1 be a finite collection of subsets of Ω

(with M ∈ N), and let f : 2Ω → R be a set function.

1 If f is non-negative and submodular, and every element in Ω is
included in at least d ≥ 1 of the subsets {Sj}Mj=1, then

M∑
j=1

f(Sj) ≥ d f(Ω). (2.10)

2 If f is a rank function, A ⊂ Ω, and every element in A is included in
at least d ≥ 1 of the subsets {Sj}Mj=1, then

M∑
j=1

f(Sj) ≥ d f(A). (2.11)

I. Sason, Technion, Israel ETH, Zurich, Switzerland November 1, 2024 44 / 52



Proposition 2.3 =⇒ Sherarer’s Lemma in Proposition 1.1

Item 1 of Proposition 2.3 yields Sherarer’s Lemma in Proposition 1.1 since
the set function given in (2.4) is submodular, and it is also nonnegative for
discrete random variables (in light of Item 1 of Proposition 2.2).
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Proposition 2.4 (Madiman and Tetali, 2010)

Let X1, . . . , Xn be discrete random variables, and let S1, . . . ,Sm ⊆ [n] be
arbitrary subsets of [n], with m,n ∈ N. For every i ∈ [n], let

d(i) =
∣∣{j ∈ [m] : i ∈ Sj}

∣∣, (2.12)

and, for an arbitrary subset A ⊆ [n], let

d−(A) = min
i∈A

d(i), (2.13a)

d+(A) = max
i∈A

d(i). (2.13b)

If d(i) > 0 for all i ∈ [n] (i.e., each element in [n] belongs to at least one
of the subsets S1, . . . ,Sm), then

m∑
j=1

H(XSj |XSc
j
)

d+(Sj)
≤ H(Xn) ≤

m∑
j=1

H(XSj )

d−(Sj)
. (2.14)
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By the proof of Proposition 2.4, the two inequalities extend to continuous
random variables under the following condition.

Corollary 2.4

Let X1, . . . , Xn be discrete random variables, and let S1, . . . ,Sm ⊆ [n] be
arbitrary subsets of [n], with m,n ∈ N. If every element i ∈ [n] belongs to
exactly a fixed number k > 0 of these subsets, then

m∑
j=1

H(XSj |XSc
j
) ≤ kH(Xn) ≤

m∑
j=1

H(XSj ). (2.15)

Furthermore, if X1, . . . , Xn are continuous random variables then, under
the above assumption on k,

m∑
j=1

h(XSj |XSc
j
) ≤ kh(Xn) ≤

m∑
j=1

h(XSj ). (2.16)
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Definition 2.5 (Erasure Entropy)

The erasure entropy of a discrete random vector Xn is given by

H−(Xn) =

n∑
i=1

H(Xi|X[n]\{i})

=

n∑
i=1

H(Xi|X1, . . . , Xi−1, Xi+1, . . . , Xn). (2.17)

For a continuous random vector, the conditional entropy on the right-hand
side of (2.17) is replaced by the conditional differential entropy.

Reference
S. Verdú and T. Weissman, “The information lost in erasures,” IEEE Trans. on
Information Theory, vol. 54, no. 11, pp. 5030–5058, November 2008.
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Proposition 2.5 (Verdú and Weissman, 2008)

The difference between the Shannon and erasure entropies of a random vector
Xn is given by

H(Xn)−H−(Xn) =

n∑
i=1

I(Xi;X
n
i+1|Xi−1) ≥ 0, (2.18)

where

Xj
i ≜ (Xi, Xi+1, . . . , Xj), 1 ≤ i ≤ j ≤ n, (2.19)

with the convention that it is void if i > j.
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The difference between the Shannon and erasure entropies of a random vector
Xn is given by

H(Xn)−H−(Xn) =

n∑
i=1

I(Xi;X
n
i+1|Xi−1) ≥ 0, (2.18)

where

Xj
i ≜ (Xi, Xi+1, . . . , Xj), 1 ≤ i ≤ j ≤ n, (2.19)

with the convention that it is void if i > j.

By Proposition 2.5, the erasure entropy is always less than or equal to the

Shannon entropy, and the difference between these entropies is equal to the total

conditional mutual information between the present and future given the past.
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Proposition 2.5 (Verdú and Weissman, 2008)

The difference between the Shannon and erasure entropies of a random vector
Xn is given by

H(Xn)−H−(Xn) =

n∑
i=1

I(Xi;X
n
i+1|Xi−1) ≥ 0, (2.18)

where

Xj
i ≜ (Xi, Xi+1, . . . , Xj), 1 ≤ i ≤ j ≤ n, (2.19)

with the convention that it is void if i > j.

Proof.
By the chain rule of the Shannon entropy and by Definition 2.5,

H(Xn)−H−(Xn) =

n∑
i=1

H(Xi|Xi−1)−
n∑

i=1

H(Xi|Xi−1, Xn
i+1)

=

n∑
i=1

I(Xi;X
n
i+1|Xi−1) ≥ 0.
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Special Cases

Example 2.6

Applying Corollary 2.4 to the singletons Si = {i} for all i ∈ [n] (so m = n)
gives that, for discrete random variables {Xi}ni=1,

n∑
i=1

H(Xi|X[n]\{i}) ≤ H(Xn) ≤
n∑

i=1

H(Xi), (2.20)

and similarly, for continuous random variables,
n∑

i=1

h(Xi|X[n]\{i}) ≤ h(Xn) ≤
n∑

i=1

h(Xi). (2.21)

The rightmost inequalities in (2.20) and (2.21) show the subadditivity
of the Shannon entropy.

The leftmost inequalities in (2.20) and (2.21) represent the fact that
the erasure entropy cannot be larger than the Shannon entropy (see
Proposition 2.5).
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Special Cases (cont.)

Example 2.7

Applying Corollary 2.4 to the collection of all the n subsets of [n] whose
size is n− 1, we get that every element in [n] belongs to exactly n− 1 of
these subsets, so for discrete random variables,

1

n− 1

n∑
i=1

H(X̃(i)|Xi) ≤ H(Xn) ≤ 1

n− 1

n∑
i=1

H(X̃(i)), (2.22)

and, for continuous random variables,

1

n− 1

n∑
i=1

h(X̃(i)|Xi) ≤ h(Xn) ≤ 1

n− 1

n∑
i=1

h(X̃(i)), (2.23)

where X̃(i) ≜ (X1, . . . , Xi−1, Xi+1, . . . , Xn) = X[n]\{i} = (Xi−1, Xn
i+1)

for i ∈ [n]. The rightmost inequality is Han’s inequality.
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Special Cases (cont.)

Example 2.8

Let S1, . . . ,Sm ⊆ [n] be arbitrary sets such that every element i ∈ [n]
belongs to at least k of these subsets of [n]. Then, d−(Sj) ≥ k for all
j ∈ [m]. By the rightmost inequality in Proposition 2.4, it follows that
for every discrete random vector Xn,

kH(Xn) ≤
m∑
j=1

H(XSj ), (2.24)

which is Shearer’s lemma (Proposition 1.1).
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